Mammary gland copper transport is stimulated by prolactin through alterations in Ctr1 and Atp7A localization.

نویسندگان

  • Shannon L Kelleher
  • Bo Lönnerdal
چکیده

Milk copper (Cu) concentration declines and directly reflects the stage of lactation. Three Cu-specific transporters (Ctr1, Atp7A, Atp7B) have been identified in the mammary gland; however, the integrated role they play in milk Cu secretion is not understood. Whereas the regulation of milk composition by the lactogenic hormone prolactin (PRL) has been documented, the specific contribution of PRL to this process is largely unknown. Using the lactating rat as a model, we determined that the normal decline in milk Cu concentration parallels declining Cu availability to the mammary gland and is associated with decreased Atp7B protein levels. Mammary gland Cu transport was highest during early lactation and was stimulated by suckling and hyperprolactinemia, which was associated with Ctr1 and Atp7A localization at the plasma membrane. Using cultured mammary epithelial cells (HC11), we demonstrated that Ctr1 stains in association with intracellular vesicles that partially colocalize with transferrin receptor (recycling endosome marker). Atp7A was primarily colocalized with mannose 6-phosphate receptor (M6PR; late endosome marker), whereas Atp7B was partially colocalized with protein disulfide isomerase (endoplasmic reticulum marker), TGN38 (trans-Golgi network marker) and M6PR. Prolactin stimulated Cu transport as a result of increased Ctr1 and Atp7A abundance at the plasma membrane. Although the molecular mechanisms responsible for these posttranslational changes are not understood, transient changes in prolactin signaling play a role in the regulation of mammary gland Cu secretion during lactation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intestinal regulation of copper homeostasis: a developmental perspective.

Stable-isotope studies in human infants and adults have shown that copper homeostasis occurs, but the contribution of the small intestine to this regulation is still not well understood. Copper first needs to be reduced to the cuprous form, most likely by Steap proteins on the apical membrane. Copper is subsequently absorbed by Ctr1 and then transferred in the enterocyte by the chaperone Atox1 ...

متن کامل

Copper transport systems are involved in multidrug resistance and drug transport.

Copper is an essential trace element and several copper containing proteins are indispensable for such processes as oxidative respiration, neural development and collagen remodeling. Copper metabolism is precisely regulated by several transporters and chaperone proteins. Copper Transport Protein 1 (CTR1) selectively uptakes copper into cells. Subsequently three chaperone proteins, HAH1 (human a...

متن کامل

Copper transport into the secretory pathway is regulated by oxygen in macrophages.

Copper is an essential nutrient for a variety of biochemical processes; however, the redox properties of copper also make it potentially toxic in the free form. Consequently, the uptake and intracellular distribution of this metal is strictly regulated. This raises the issue of whether specific pathophysiological conditions can promote adaptive changes in intracellular copper distribution. In t...

متن کامل

Differential expression of ATP7A, ATP7B and CTR1 in adult rat dorsal root ganglion tissue

BACKGROUND ATP7A, ATP7B and CTR1 are metal transporting proteins that control the cellular disposition of copper and platinum drugs, but their expression in dorsal root ganglion (DRG) tissue and their role in platinum-induced neurotoxicity are unknown. To investigate the DRG expression of ATP7A, ATP7B and CTR1, lumbar DRG and reference tissues were collected for real time quantitative PCR, RT-P...

متن کامل

Effect of copper and role of the copper transporters ATP7A and CTR1 in intracellular accumulation of cisplatin.

An investigation was carried out as to whether copper affected the intracellular accumulation of cisplatin (cis-diamminedichloroplatinum(II); CDDP) and whether changes in the expression of ATP7A and CTR1 were related to acquired resistance using CDDP-sensitive (KB) and -resistant (KBR/0.8, KBR/1.2) cells. Intracellular platinum accumulation and platinum-DNA adducts were significantly lower in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 291 4  شماره 

صفحات  -

تاریخ انتشار 2006